Wavelet-network Based on L1-norm Minimisation for Learning Chaotic Time Series
نویسندگان
چکیده
This paper presents a wavelet-neural network based on the L1-norm minimisation for learning chaotic time series. The proposed approach, which is based on multi-resolution analysis, uses wavelets as activation functions in the hidden layer of the wavelet-network. We propose using the L1-norm, as opposed to the L2-norm, due to the wellknown fact that the L1-norm is superior to the L2-norm criterion when the signal has heavy tailed distributions or outliers. A comparison of the proposed approach with previous reported schemes using a time series benchmark is presented. Simulation results show that the proposed wavelet-network based on the L1-norm performs better than the standard back-propagation network and the wavelet-network based on the traditional L2-norm when applied to synthetic data.
منابع مشابه
Model Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series
Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...
متن کاملA Novel Fuzzy Based Method for Heart Rate Variability Prediction
Abstract In this paper, a novel technique based on fuzzy method is presented for chaotic nonlinear time series prediction. Fuzzy approach with the gradient learning algorithm and methods constitutes the main components of this method. This learning process in this method is similar to conventional gradient descent learning process, except that the input patterns and parameters are stored in mem...
متن کاملL1 regularization is better than L2 for learning and predicting chaotic systems
Emergent behaviors are in the focus of recent research interest. It is then of considerable importance to investigate what optimizations suit the learning and prediction of chaotic systems, the putative candidates for emergence. We have compared L1 and L2 regularizations on predicting chaotic time series using linear recurrent neural networks. The internal representation and the weights of the ...
متن کاملInitialisation and training procedures for wavelet networks applied to chaotic time series
Wavelet networks are a class of neural network that take advantage of good localization properties of multi-resolution analysis and combine them with the approximation abilities of neural networks. This kind of networks uses wavelets as activation functions in the hidden layer and a type of back-propagation algorithm is used for its learning. However, the training procedure used for wavelet net...
متن کاملNoisy Chaotic Time Series Prediction Based on Wavelet Echo State Network
As a research focus of intelligence algorithm, the prediction of classic noiseless chaotic time series has a great development in recent years. However, the existing prediction models cannot get good performance for real-world chaotic time series because of the interference of noise components. In order to take full advantage of the property of real-world chaotic time series, the paper proposes...
متن کامل